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In this article, a number of the results relevant to the concept of sublattices of a

basic crystallographic lattice are reviewed, emphasizing particularly previously

unpublished work on the algebraic aspects. A three-dimensional geometric

lattice L can be considered as an infinite Abelian group under addition. A

sublattice S of L, which is also three-dimensional, is a subgroup of L such that

the finite quotient group,

G ’ L=S;

is an Abelian group of order the index of S in L. The sublattice itself in its

standard form is represented by an upper triangular matrix. The index of the

sublattice is given by the determinant of this matrix. It is first noted that a

sublattice described by an arbitrary basis set in L may be converted to this

standard form. Next the sublattice is expressed as the intersection of a set of

sublattices of individual index a power of a distinct prime, i.e.

Sðn ¼ pa
1pb

2 . . .Þ ¼ S1ðp
a
1Þ \ S2ðp

b
2Þ \ . . . ¼

\
i

Siðp
�i
i Þ;

where p1, p2 etc. are prime numbers and n ¼
Q

i p�i is the Euclidean factorization

of n. This decomposition is important because it corresponds to the Sylow

decomposition of the corresponding quotient group

G ffi �
i

Api
:

It is also useful to be able to carry out two commutative binary operations on

sublattices of L; these are to find their common sublattice of lowest index in L,

which is their intersection

S\ ¼ SaðmÞ \ SbðnÞ

and their common superlattice of highest index in L, given by

S<> ¼ hSaðmÞ; SbðnÞi;

where <> indicates the span of the sublattices.

1. Introduction

The concept of a sublattice of a basic crystallographic lattice in

two or three dimensions is crucial to the many applications of

group–subgroup relations in crystallography and, although

much is known regarding sublattices in general (Conway &

Sloane, 1988), more could be done to make this knowledge

available to practising crystallographers. In addition, the

whole subject is clouded by a confusion in terminology; a

lattice that contains only a fraction of the points of the basic

lattice defining the system, properly called a sublattice, is

frequently referred to as a (commensurate) superlattice, or as

a derivative lattice. Although much presented here applies to

such sublattices in an abstract sense, for the purposes of the

suggested applications we shall consider the basic lattice to

typically represent an ideal or average crystal structure, on

which is imposed a periodic disturbance in position, compo-

sition or magnetic properties, such that only points of the

sublattice are truly identical by translation to the common

origin of both lattices.

In this article, we review a number of the relevant results,

emphasizing particularly previously unpublished work on the

algebraic aspects, since the number-theory-based enumerative

methods have recently been summarized elsewhere (Ruther-

ford, 2003).

For convenience, we shall focus on three-dimensional

lattices here. Such a geometric lattice L can be considered as

an infinite Abelian group under addition. A sublattice S of L



which is also three-dimensional is a subgroup of L under

addition, such that the quotient group

G ffi L=S ð1Þ

is a finite Abelian group of order |G| = [L : S] (i.e. the order of

G is the index of S in L). When |G| is the natural number n, the

structure of the group G is restricted by the number of

dimensions of the lattice to the direct product of at most three

cyclic groups and, because of the fundamental theorem on the

structure of such finite Abelian groups (Lang, 2002), its

structure may be expressed in the form

G ffi Ca � Cb � Cc; ð2Þ

where n = abc, cjb (i.e. c is a divisor of b), and bja. According

to the classification of Harker (1978), if c 6¼ 1 then G is of type

I, if c = 1 and b 6¼ 1 it is of type II and if b = c = 1 then it is of

type III.

For example, if G has order 72, it must be one of

type I: C6 � C6 � C2 or C18 � C2 � C2

type II: C12 � C6 or C24 � C3 or C36 � C2

type III: C72:

Now, if the sublattice represents the period of a perturba-

tion of an underlying crystal structure in L, each cycle in the

structure of G must correspond to an independent vector of

this perturbation. Each such propagation vector is formally

represented by an additional dimension when the period of

the perturbation is incommensurate with L. So, using this

analogy, a type III sublattice, for example, is comparable to a

(3 + 1) dimensionality in the incommensurate case.

Turning to the sublattices themselves, these are character-

ized by three independent vectors of L. In general, there are

an infinite number of ways to define the unit cell of the

sublattice, but each sublattice can be expressed in, for

example, the Hermite normal form (Cohen, 1993) as chosen

by Billiet & Rolley-Le Coz (1980) as standard. Here the

sublattice is represented by an upper triangular matrix, which

generates the basis vectors of the sublattice by post-

multiplication on the basis vectors of L. The index of the

sublattice is given by the determinant of this matrix, i.e. (abc)

in the example below:

a d e

0 b f

0 0 c

0
@

1
A: ð3aÞ

Billiet & Rolley-Le Coz (1980) chose a particular option for

the off-diagonal elements of the matrix which requires d and e

to lie in the range

� ða� 1Þ=2;�ða� 1Þ=2þ 1; . . . ; ða� 1Þ=2� 1; ða� 1Þ=2

a even;

� a=2þ 1;�a=2þ 2; . . . ; a=2� 1; a=2 a odd;

ð3bÞ

and f to lie in the equivalent range with respect to b.

Fig. 1 shows for a two-dimensional sublattice a possible

conventional or reduced cell and the corresponding standard

cell choice.

The ranges stated in (3b) mean that, for an index n with a

specific set of divisors a, b and c, there are a possible values for

each of d and e, and b possible values for f, giving a2b in all.

It is also possible to transform the matrix above by standard

matrix operations to a diagonal form, the Smith or elementary
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Figure 1
A sublattice (blue spheres) of a basic crystallographic lattice in two
dimensions (red and blue spheres). (a) A possible convention or reduced
cell. (b) The standard cell choice.

Figure 2
The construction of a sublattice from the intersection of sublattices with
prime-power indices. (a) Unit cell of sublattice (2 0/0 2) index 4, yellow
and green spheres. (b) Unit cell of sublattice (3 �11/0 1) index 3, blue and
green spheres. (c) Unit cell of their intersection (6 �22/0 2), index 12, green
spheres.



divisor normal form (Cohen, 1993), which shows the structure

of G explicitly.

2. Sublattice algebra

Now it has been shown that the set of sublattices of L are

multiplicative in the primes (Rutherford, 1992; Gruber, 1997).

That means there is a distinct sublattice S(mn) of index (mn)

corresponding to each distinct Sa(m) and Sb(n), when m and n

are mutually prime, i.e. when their greatest common divisor,

written (m, n), is 1. This sublattice is, in fact, given by

SðmnÞ ¼ SaðmÞ \ SbðnÞ: ð4Þ

When m and n contain a common divisor, not only does

equation (4) no longer apply but the intersection S(�|mn) =

Sa(m) \ Sb(n) may arise in more than one way, in the sense

that

SaðmÞ \ SbðnÞ ¼ ScðmÞ \ SdðnÞ

becomes a possibility.

The source of the multiplicative property is the fact that we

can express each sublattice as the intersection of a set of

sublattices of individual index a power of a distinct prime, i.e.

Sðn ¼ pa
1pb

2 . . .Þ ¼ S1ðp
a
1Þ \ S2ðp

b
2Þ \ . . . ¼

\
i

Siðp
�i
i Þ; ð5Þ

where p1, p2 etc. are prime numbers and n ¼
Q

i p
�i
i is the

Euclidean factorization of n. For example, we thus show in

Fig. 2

6 3

0 2

� �
¼

2 1

0 2

� �
\

3 0

0 1

� �
:

This decomposition is important because it corresponds to

the Sylow decomposition (Lang, 2002) of G,

G ffi �
i

Api
; ð6Þ

where each group Api
is of order p

�i
i , each Api

� G, and �i is

the highest possible power of pi, i.e. pi does not divide [G : Api
].

The groups Api
are then the p-Sylow subgroups of G.

Now, because the structures of the p-Sylow subgroups are

not simple direct products, we cannot properly carry the

decomposition process beyond the prime power lattices Sðp
�i
i Þ.

As a simple example of the problems that arise, consider the

group structures of the Abelian groups of order p2, p prime.

These are Cp2 and Cp � Cp. Cp2 has only one subgroup of

order p, while Cp � Cp has (p + 1). If we take the intersection

of two distinct sublattices of index p, we get

Sabðp
2Þ ¼ SaðpÞ \ SbðpÞ; Sa 6¼ Sb;

where G(Sab)ffi Cp � Cp. Each possible Sab may be

constructed from any of a large number of pairs of sublattices

of individual index p, while, on the other hand, it is impossible

to construct a sublattice with quotient group Cp2 as the

intersection of two such sublattices.

One potential application of sublattices is the enumeration

of possible structures based on two or more motifs occupying

cells of a basic lattice by the Polya method (Polya & Read,

1987). To do this for the complete set of sublattices of index n,

as in Rutherford (1995), we need only enumerate the sublat-

tices of each possible group structure, using the appropriate

formulae (Rutherford, 1993). On the other hand, if we wish to

find the possible structures corresponding to a specific

sublattice, we apply the Smith normal form to assign its

quotient group structure G.
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Figure 3
Binary operations, S<> = L case. (a) Sublattice 1 (blue and green). (b)
Sublattice 2 (yellow and green). (c) Their intersection (green only). (d)
Their sum (red, blue, yellow and green).

Figure 4
As Fig. 3 but for the S<> 6¼ L case.



Further, we wish to be able to carry out two commutative

binary operations on sublattices of L; these are to find their

common superlattice of highest index in L, given by

S<> ¼ hSaðmÞ; SbðnÞi; ð7Þ

where <> indicates the span of the sublattices, and their

common sublattice of lowest index in L, which is their inter-

section

S\ ¼ SaðmÞ \ SbðnÞ: ð8Þ

The relevance of these operations lies in the various applica-

tions of space-group–subgroup relations in crystallography.

The lattice–sublattice relation corresponds to an equiclass

relation between space groups, one of the two possible

components of a general space-group–subgroup relation, the

other being the equitranslational component. So, throughout

the remainder of this section, we shall call the space group of

the highest symmetry crystal structure in our tree of space-

group–subgroup relations – the aristotype in Bärnighausen’s

(1980) terminology – K, and apply the notation S(H) to imply

the sublattice of L(K) which corresponds to the subgroup of

translations of the space group H� K. We first note that, if we

have two such space groups H � K, there is an important

intermediate space group, the Hermann group M, of profound

practical importance (Wondratschek & Aroyo, 2001), such

that

H � M � K

with H an equiclass subgroup of M, and the lattice of S(H) is a

sublattice of index [M : H] of the common lattice L of M and

K. In addition, we may find, for two such subgroups H1 and H2

of K, by applying S<> to S(H1) and S(H2), the lattice of their

minimal common supergroup, an important step in the

construction of Bärnighausen (1980) trees, and, by applying

S\, the lattice of their maximal common subgroup, which may

likewise be an aid in applying the Stokes & Hatch (2002)

approach to the mechanism of discontinuous phase transitions.

We can examine the possible indices of S\ and S<> using

relationship (5). Writing m for [M1 : H1] and n for [M2 : H2], we

have

SaðmÞ ¼
\

i

Saðp
�i
i Þ; m ¼

Q
i

p
�i
i ð9aÞ

and

SbðnÞ ¼
\

i

Sbðp
�i
i Þ; n ¼

Q
i

p
�i
i : ð9bÞ

For a specific pi, the factor of the largest common divisor

(m, n) will be p
�i
i , where � i is the lesser of �i and �i, and hence

(m, n) =
Q

i p
�i
i .

So Api
ð<>Þ the p-Sylow subgroup of G(S<>) corresponding

to

S<>ðpiÞ ¼ hSaðp
�i
i Þ; Sbðp

�i
i Þi

will only have index p
�i
i if Api

ðaÞ � Api
ðbÞ or vice versa. In

general, its index will lie in the range 1 � |S<>(pi)| � p
�i
i , where

an index of unity implies S<>(pi) = L. This shows the index of

S<> must lie in the range 1 � |S<>| � (m, n) and be a divisor of

(m, n).

A parallel argument for S\ shows its index must be a divisor

of mn in the range mn/(m, n) � |S\| � mn and, in fact, that

|S<>||S\| = mn. These relations are illustrated in Figs. 3 and 4.

It is not possible to predict the quotient group structures

associated with S<> and S\ simply from the isomorphism types

of the quotient groups of Sa(m) and Sb(n), as they will also

depend on the relative orientation in L of the cycles of their

Sylow subgroups. Table 1 gives an example of the possibilities

relating to two non-isomorphic quotient groups of index 72.

3. Algorithms

In practice, a sublattice will commonly be represented by an

arbitrary non-singular integral matrix M acting on the vectors

of L by premultiplication. From this we may extract the

Hermite and Smith normal forms by standard algorithms

(Cohen, 1993; Pohst & Zassenhaus, 1989).

The individual sublattices in equation (5) we find by

working through the prime divisors of n as shown below for

the first prime p1, for if

SðnÞ ¼

ap
q
1 d e

0 bpr
1 f

0 0 cps
1

0
@

1
A;

(p1, abc) = 1, then we have SðnÞ ¼ Sðp
qþrþs
1 Þ \ SðabcÞ with

Sðp
qþrþs
1 Þ ¼

p
q
1 d mod p

q
1 e mod p

q
1

0 pr
1 f mod pr

1

0 0 ps
1

0
@

1
A

and

SðabcÞ ¼

a d mod a e mod a

0 b f mod b

0 0 c

0
@

1
A:

The results of the binary operations can be expressed in terms

of the sublattices of equations (5) and (9), i.e.

S\ ¼ SaðmÞ \ SbðnÞ ¼
\

i

½Saðp
�i
i Þ \ Sbðp

�i
i Þ�

and

S<> ¼ hSaðmÞ; SbðnÞi ¼
\

i

hSaðp
�i
i Þ; Sbðp

�i
i Þi:
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Table 1
Possible quotient group structures that may result from the span and
intersection respectively of two index-72 sublattices with individual group
structures C24� C3 and C36 � C2; |S<>||S\| = 5184 throughout.

|S<>| G(S<>) G(S\) |S\|

1 C1 C72 � C12 � C6 5184
2 C2 C72 � C12 � C3 2592
3 C3 C72 � C12 � C2 1728
4 C4 C72 � C6 � C3 1296
6 C6 C72 � C12 864

12 C12 C72 � C6 432



With this approach, we need only address those primes that

divide both m and n, since for an arbitrary prime p

p0 0 0

0 p0 0

0 0 p0

0
B@

1
CA ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA;

pq d e

0 pr f

0 0 ps

0
B@

1
CA \

1 0 0

0 1 0

0 0 1

0
B@

1
CA ¼

pq d e

0 pr f

0 0 ps

0
B@

1
CA

and

pq d e

0 pr f

0 0 ps

0
@

1
A*
;

1 0 0

0 1 0

0 0 1

0
@

1
A+ ¼ 1 0 0

0 1 0

0 0 1

0
@

1
A:

For the intersection

p� � "
0 p� �
0 0 p�

0
@

1
A ¼ pA D E

0 pB F

0 0 pC

0
@

1
A \ pa d e

0 pb f

0 0 pc

0
@

1
A

we have, for the diagonal elements, �= max(A, a), max(b, B)�

�� (B + b), and max(C, c)� � � (C + c), that is, S\(1, 1) is the

only non-zero element that can be determined immediately.

So we first resolve the upper left submatrix

p� �
0 p�

� �

by a search through the possible values of � for a solution to

p��BD 	 p��bd 	 �mod p�:

The remaining entries derive in a similar way from the

simultaneous simplest solutions of congruences on the other

two 2 
 2 submatrices

p� "
0 p�

� �
and

p� �
0 p�

� �
:

In the case of the span

p� � "
0 p� �
0 0 p�

0
@

1
A ¼ pA D E

0 pB F

0 0 pC

0
@

1
A*
;

pa d e

0 pb f

0 0 pc

0
@

1
A+;

we have for the diagonal elements 1 � � � min(A, a), 1 � � �
min(B, b) and � = min(C, c).

This time it is the element S<>(3, 3) that can be identified

immediately, and we begin by resolving the lower right

submatrix

p� �
0 p�

� �
:

Writing for simplicity � for max(C, c), we consider the

distribution of values of y for which the plane (x, y, p�)

includes points of either sublattice. This leads to the values of

� and � being given by the largest value of � for which a

congruence � 	 (p��CF �p��cf) mod p� exists. Similarly to

the previous case, the completion of the process depends on

the simultaneous resolution of the two remaining submatrices.

I wish to thank one of the anonymous referees for

suggesting significant improvements to this article.
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